Metformin inhibits the proliferation of A431 cells by modulating the PI3K/Akt signaling pathway

نویسندگان

  • YINGSHAN LIU
  • YAN ZHANG
  • KUN JIA
  • YUHAO DONG
  • WEIYUAN MA
چکیده

The ability of metformin, an antidiabetic drug with wide applications, to inhibit tumor cell growth has recently been discovered. The PI3K/Akt signaling pathway has been found to play an important role in the survival, proliferation and apoptosis of tumor cells. The aim of the present study was to explore the effect of metformin on the proliferation of A431 human squamous cell carcinoma cells and the underlying molecular mechanisms. A431 cells in the logarithmic growth phase were treated with 0, 15, 30, 45 and 60 mM metformin for 12, 24 and 36 h, respectively. Cell morphology with 45 mM metformin treatment for 24 h was observed under a microscope. The proliferation of A431 cells was detected by the Cell Counting kit-8 colorimetric method. The mRNA expression levels of PI3K and Akt were detected by reverse transcription-polymerase chain reaction (RT-PCR). The protein expression levels of PI3K, Akt and phosphorylated (p)-Akt were detected by western blot analysis. Metformin treatment caused morphological change in A431 cells and inhibited their proliferation in a significant time- and dose-dependent manner. RT-PCR results showed that the mRNA expression of PI3K was inhibited by metformin in a time- and dose-dependent manner (P<0.05). However, there was no significant change in the mRNA expression of Akt following metformin treatment (P>0.05). Western blotting results showed that the protein expression levels of PI3K and p-Akt were inhibited by metformin in a time- and dose-dependent manner (P<0.05). In conclusion, metformin significantly inhibited the proliferation of A431 cells in the current study, which may be strongly associated with the inhibition of the PI3K/Akt signaling pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway

Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...

متن کامل

Anti-diabetic effect of loganin by inhibiting FOXO1 nuclear translocation via PI3K/Akt signaling pathway in INS-1 cell

Objective(s): JiangTangXiaoKe (JTXK) granule, a Chinese traditional herbal formula, has been clinically used and demonstrated to be beneficial in controlling high glucose and to relieve the symptoms of  Type 2 diabetes mellitus patients for decades. In this study, we explored how loganin, one of the components in JTXK granule, mediated the anti-diabetic effect.Materials and Methods: We generate...

متن کامل

Curcumin promotes osteogenic differentiation of periodontal ligament stem cells through the PI3K/AKT/Nrf2 signaling pathway

Objective(s): The aim of this study was to investigate the effect of curcumin on the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and its underlying potential mechanism.Materials and Methods: The tissue explant adherence method was used to isolate hPDLSCs. Flowcytometry, Alizarin Red staining and Oil Red ...

متن کامل

PI3K/Akt inhibition and down-regulation of BCRP re-sensitize MCF7 breast cancer cell line to mitoxantrone chemotherapy

Objective(s):Multidrug resistance (MDR) of cancer cells is a major obstacle to successful chemotherapy. Overexpression of breast cancer resistance protein (BCRP) is one of the major causes of MDR. In addition, it has been shown that PI3K/Akt signaling pathway involves in drug resistance. Therefore, we evaluated the effects of novel approaches including siRNA directed against BCRP and targeted t...

متن کامل

Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway

Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015